Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Clinics ; 68(2): 245-252, 2013. ilus, tab
Article in English | LILACS | ID: lil-668814

ABSTRACT

OBJECTIVE: In the present study, the peripheral mechanism that mediates the pressor effect of angiotensin-(1-7) in the rostral ventrolateral medulla was investigated. METHOD: Angiotensin-(1-7) (25 pmol) was bilaterally microinjected in the rostral ventrolateral medulla near the ventral surface in urethane-anesthetized male Wistar rats that were untreated or treated (intravenously) with effective doses of selective autonomic receptor antagonists (atenolol, prazosin, methyl-atropine, and hexamethonium) or a vasopressin V1 receptor antagonist [d(CH2)5 -Tyr(Me)-AVP] given alone or in combination. RESULTS: Unexpectedly, the pressor response produced by angiotensin-(1-7) (16 ± 2 mmHg, n = 12), which was not associated with significant changes in heart rate, was not significantly altered by peripheral treatment with prazosin, the vasopressin V1 receptor antagonist, hexamethonium or methyl-atropine. Similar results were obtained in experiments that tested the association of prazosin and atenolol; methyl-atropine and the vasopressin V1 antagonist or methyl-atropine and prazosin. Peripheral treatment with the combination of prazosin, atenolol and the vasopressin V1 antagonist abolished the pressor effect of glutamate; however, this treatment produced only a small decrease in the pressor effect of angiotensin-(1-7) at the rostral ventrolateral medulla. The combination of hexamethonium with the vasopressin V1 receptor antagonist or the combination of prazosin, atenolol, the vasopressin V1 receptor antagonist and methyl-atropine was effective in blocking the effect of angiotensin-(1-7) at the rostral ventrolateral medulla. CONCLUSION: These results indicate that angiotensin-(1-7) triggers a complex pressor response at the rostral ventrolateral medulla that involves an increase in sympathetic tonus, release of vasopressin and possibly the inhibition of a vasodilatory mechanism.


Subject(s)
Animals , Male , Rats , Angiotensin I/pharmacology , Medulla Oblongata/drug effects , Peptide Fragments/pharmacology , Vasodilator Agents/pharmacology , Angiotensin I/administration & dosage , Arterial Pressure/drug effects , Heart Rate/drug effects , Hexamethonium/administration & dosage , Microinjections , Medulla Oblongata/physiopathology , Peptide Fragments/administration & dosage , Rats, Wistar , Receptors, Vasopressin/antagonists & inhibitors , Time Factors , Vasodilator Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL